Lignin is a common and abundant byproduct of the pulp and paper industry and is generally burned to produce steam. Opportunities exist to acquire greater value from lignin by leveraging the properties of this highly conjugated biomacromolecule for applications in UV absorption and polymer reinforcement. These applications can be commercialized by producing value-added lignin nanoparticles (LNPs) using a scalable sonochemical process.
View Article and Find Full Text PDFRoadside vegetated filters strips (VFSs) reduce roadway runoff pollution by intercepting stormwater and reducing pollutant loads. VFS maintenance and operating costs can be reduced by designing the VFSs to serve as sites for production of marketable biomass. This biomass can provide feedstock for the emerging bioeconomy producing renewable fuels and biobased chemicals and products.
View Article and Find Full Text PDFBackground: The impact of the COVID-19 pandemic on the population's mental health is vital for informing public health policy and decision-making. However, information on mental health-related healthcare service utilisation trends beyond the first year of the pandemic is limited.
Aims: We examined mental health-related healthcare service utilisation patterns and psychotropic drug dispensations in British Columbia, Canada, during the COVID-19 pandemic compared with the prepandemic period.
The use of agricultural waste biomass for nanocellulose production has gained interest due to its environmental and economic benefits compared to conventional bleached pulp feedstock. However, there is still a need to establish robust process technologies that can accommodate the variability of waste feedstocks and to understand the effects of feedstock characteristics on the final nanofiber properties. Here, lignocellulosic nanofibers with unique properties are produced from various waste biomass based on a simple and low-cost process using mild operating conditions.
View Article and Find Full Text PDFBackground: The overall goal of the present study is to investigate the economics of an integrated biorefinery converting hybrid poplar into jet fuel, xylitol, and formic acid. The process employs a combination of integrated biological, thermochemical, and electrochemical conversion pathways to convert the carbohydrates in poplar into jet fuel, xylitol, and formic acid production. The C5-sugars are converted into xylitol via hydrogenation.
View Article and Find Full Text PDF