Publications by authors named "R J Guillory"

Ischemic stroke causes acute brain calcium phosphate (CaP) deposition, a process involving primarily the injured neurons. Whereas the adverse impact of CaP deposition on the brain structure and function has been recognized, the underlying mechanisms remain poorly understood. This investigation demonstrated that the neuron-expressed, plasma membrane-associated Ca2+-binding proteins annexin (Anx) A2, AnxA5, AnxA6, and AnxA7 contributed to neuronal CaP deposition in the mouse model of ischemic stroke.

View Article and Find Full Text PDF
Article Synopsis
  • Magnesium (Mg) alloys, particularly those with gadolinium, are emerging as promising materials for temporary bone implants due to their biocompatibility and mechanical properties, presenting a potential replacement for traditional titanium and stainless-steel implants.
  • A study involving rat tibias over various time periods (10, 20, and 32 weeks) used advanced imaging techniques to evaluate the implants' degradation behavior and their integration with bone tissues.
  • Results indicate that the Mg-xGd implants not only form a stable degradation layer and support bone remodeling similar to titanium but also do not accumulate harmful levels of Mg or Gd in organs, making them suitable for use in bone repair.
View Article and Find Full Text PDF

In order to properly satisfy biomedical constraints for cardiovascular applications, additively manufactured NiTi scaffolds required further process and metallurgical engineering. Additively manufactured NiTi materials for cardiovascular use will have to undergo surface finishing in order to minimize negative surface interactions within the artery. In this study, we sought to understand biocompatibility from chemically etched additively manufactured NiTi scaffolds by laser powder bed fusion (LPBF).

View Article and Find Full Text PDF

The past five years have yielded impressive advancements in fully absorbable metal stent technology. The desired ultimate ability for such devices to treat a vascular stenosis without long-term device-related complications or impeding future treatment continues to evoke excitement in clinicians and engineers alike. Nowhere is the need for fully absorbable metal stents greater than in patients experiencing vascular anomalies associated with congenital heart disease (CHD).

View Article and Find Full Text PDF
Article Synopsis
  • Flow diverter devices are tiny stents designed to redirect blood flow away from brain aneurysms, helping to prevent their rupture by inducing blood clotting within the aneurysm.
  • Current options leave permanent materials in the body, which can lead to complications, making absorbable devices that dissolve after use a better choice.
  • The study introduces a new composite wire made of absorbable iron alloy and pure molybdenum, showing promising mechanical properties, progressive corrosion, and reduced fragmentation risk, indicating they could be ideal for absorbable flow diverters.
View Article and Find Full Text PDF