Background: The emergence of SARS-CoV-2 variants and COVID-19 vaccination have resulted in complex exposure histories. Rapid assessment of the effects of these exposures on neutralising antibodies against SARS-CoV-2 infection is crucial for informing vaccine strategy and epidemic management. We aimed to investigate heterogeneity in individual-level and population-level antibody kinetics to emerging variants by previous SARS-CoV-2 exposure history, to examine implications for real-time estimation, and to examine the effects of vaccine-campaign timing.
View Article and Find Full Text PDFBackground: Over the past three decades, our understanding of sleep apnea in women has advanced, revealing disparities in pathophysiology, diagnosis, and treatment compared to men. However, no real-life study to date has explored the relationship between mask-related side effects (MRSEs) and gender in the context of long-term CPAP.
Methods: The InterfaceVent-CPAP study is a prospective real-life cross-sectional study conducted in an apneic adult cohort undergoing at least 3 months of CPAP with unrestricted mask-access (34 different masks, no gender specific mask series).
Cellular senescence, a stress-induced stable proliferation arrest associated with an inflammatory senescence-associated secretory phenotype (SASP), is a cause of aging. In senescent cells, cytoplasmic chromatin fragments (CCFs) activate SASP via the anti-viral cGAS/STING pathway. Promyelocytic leukemia (PML) protein organizes PML nuclear bodies (NBs), which are also involved in senescence and anti-viral immunity.
View Article and Find Full Text PDFCellular senescence, a stress-induced stable proliferation arrest associated with an inflammatory Senescence-Associated Secretory Phenotype (SASP), is a cause of aging. In senescent cells, Cytoplasmic Chromatin Fragments (CCFs) activate SASP via the anti-viral cGAS/STING pathway. PML protein organizes PML nuclear bodies (NBs), also involved in senescence and anti-viral immunity.
View Article and Find Full Text PDFObjective: Metabolic dysfunction associated fatty liver disease (MAFLD) is over-represented in people with HIV (PWH). Maraviroc (MVC) and/or metformin (MET) may reduce MAFLD by influencing inflammatory pathways and fatty acid metabolism.
Design: Open-label, 48-week randomized trial with a 2 x 2 factorial design.