A novel spectroscopy diagnostic for measuring internal magnetic fields in high temperature magnetized plasmas has been developed. It involves spectrally resolving the Balmer-α (656 nm) neutral beam radiation split by the motional Stark effect with a spatial heterodyne spectrometer (SHS). The unique combination of high optical throughput (3.
View Article and Find Full Text PDFMagnetic measurements during dc helicity injection tokamak startup indicate Alfvénic turbulence in the injected current streams mediates magnetic relaxation and results in macroscopic plasma current drive. Localization of such activity to the injected current streams, a bias voltage dependence to its onset, and higher-order spectral analysis indicate super-Alfvénic electrons excite instabilities that drive the observed turbulence. Measured fluctuation helicity is consistent with an α-dynamo electromotive force driving net current comparable to the macroscopic equilibrium current density.
View Article and Find Full Text PDFAn upgraded detector and several optimizations have significantly improved the Ultra-Fast Charge Exchange Recombination Spectroscopy (UF-CHERS) diagnostic sensitivity to ion temperature and parallel velocity fluctuations at turbulence relevant spatio-temporal scales. Normalized broadband ion temperature and parallel velocity fluctuations down to x̃x∼1% (x = T, v) and up to ∼450 kHz have been measured in a variety of plasmas. The multi-field nature of the CHERS technique also allows measurements of the cross-phase angles of the fluctuating fields.
View Article and Find Full Text PDFHigh resolution luminosity product measurements of neutral beam emission in magnetized plasmas are severely limited by the artificial Doppler broadening inherent to the use of large diameter collection optics. In this paper, a broadening compensation method is developed for the spatial heterodyne spectroscopy interferometric technique. The compensation technique greatly reduces the artificial broadening, thereby enabling high resolution measurements at a significantly higher photon flux than previously available.
View Article and Find Full Text PDFRev Sci Instrum
October 2018
Two new magnetic probes have been deployed on the Pegasus spherical tokamak to study the dynamics of local helicity injection non-solenoidal plasma start-up and current drive. The magnetic radial array probe consists of 15 pickup coils (∼5 × 8 mm each) that measure over a 15 cm linear extent. The coils consist of traces embedded in a printed circuit board.
View Article and Find Full Text PDF