Publications by authors named "R J C Carbas"

Three-dimensional printing is widely becoming prevalent in various industries, including the automotive sector. As this technology advances, critical structures subjected to impact loads may also be produced using additive manufacturing. A key parameter in this technique is the infill density of the printed geometry, which directly affects mechanical properties such as strength, stiffness, and ductility.

View Article and Find Full Text PDF

In response to heightened environmental awareness, various industries, including the civil and automotive sector, are contemplating a shift towards the utilization of more sustainable materials. For adhesive bonding, this necessitates the exploration of materials derived from renewable sources, commonly denoted as bio-adhesives. This study focuses on a bio-adhesive L-joint, which is a commonly employed configuration in the automotive sector for creating bonded structural components with significant bending stiffness.

View Article and Find Full Text PDF

This study focuses on the prediction of the fracture mechanics behaviour of a highly flexible adhesive (with a tensile elongation of 90%), since this type of adhesive is becoming widely used in automotive structures due to their high elongation at break and damping capacity. Despite their extensive applications, the understanding of their fracture mechanics behaviour under varying loading rates and temperatures remains limited in the literature. In addition, current prediction models are also unable to accurately predict their behaviour due to the complex failure mechanism that such bonded joints have.

View Article and Find Full Text PDF

The use of thin-ply composite materials has rapidly increased due to their tailorable mechanical properties and design flexibility. Considering an adhesively bonded composite joint, peel stress stands out as a key contributor leading to failure among other primary stress factors. Therefore, the reinforcement of carbon fiber-reinforced polymer (CFRP) laminates throughout the thickness could be considered as an approach to improve the joint strength.

View Article and Find Full Text PDF

This study experimentally investigates the influence of metal chips and glass fibers on the mode I fracture toughness, energy absorption, and tensile strength of polymer concretes (PCs) manufactured by waste aggregates. A substantial portion of the materials employed in manufacturing and enhancing the tested polymer concrete are sourced from waste material. To achieve this, semi-circular bend (SCB) samples were fabricated, both with and without a central crack, to analyze the strength and fracture behavior of the composite specimens.

View Article and Find Full Text PDF