K-vacancy Auger states of N(q+) (q = 2-5) ions are studied by using the complex multireference single- and double-excitation configuration interaction (CMRD-CI) method. The calculated resonance parameters are in good agreement with the available experimental and theoretical data. It shows that the resonance positions and widths converge quickly with the increase of the atomic basis sets in the CMRD-CI calculations; the standard atomic basis set can be employed to describe the atomic K-vacancy Auger states well.
View Article and Find Full Text PDFThe multireference spin-orbit (SO) configuration interaction (CI) method in its Λ-S contracted SO-CI version is employed to calculate two-dimensional potential energy surfaces for the ground and low-lying excited states of CF3I relevant to its photodissociation in the lowest absorption band (A band). The computed equilibrium geometry for the X̃A1 ground state and vibrational frequency ν3 for the C-I stretch mode agree well with available experimental data. The (3)Q0(+) state dissociating to the excited I((2)P1/2) limit is found to have a minimum of 1570 cm(-1) significantly shifted to larger internuclear distances (RC-I = 5.
View Article and Find Full Text PDFTechnical problems connected with use of the Born-Oppenheimer clamped-nuclei approximation to generate electronic wave functions, potential energy surfaces (PES), and associated properties are discussed. A computational procedure for adjusting the phases of the wave functions, as well as their order when potential crossings occur, is presented which is based on the calculation of overlaps between sets of molecular orbitals and configuration interaction eigenfunctions obtained at neighboring nuclear conformations. This approach has significant advantages for theoretical treatments describing atomic collisions and photo-dissociation processes by means of ab initio PES, electronic transition moments, and nonadiabatic radial and rotational coupling matrix elements.
View Article and Find Full Text PDFThe photodissociation of vibrationally excited Cl(2)(v = 1) has been investigated experimentally using the velocity mapped ion imaging technique. The experimental measurements presented here are compared with the results of time-dependent wavepacket calculations performed on a set of ab initio potential energy curves. The high level calculations allow prediction of all the dynamical information regarding the dissociation, including electronic polarization effects.
View Article and Find Full Text PDFMultireference configuration interaction calculations have been carried out for low-lying electronic states of AsH(3). Bending potentials for the nine lowest states of AsH(3) are obtained in C(3v) symmetry for As-H distances fixed at the ground state equilibrium value of 2.850 a(0), as well as for the minimum energy path constrained to R(1) = R(2) = R(3).
View Article and Find Full Text PDF