Publications by authors named "R J Appelhoff"

We investigated renal hemodynamics in isolated, perfused kidneys from rat models of diabetes and hypertension. Autoregulation and passive vascular responses were measured using stepped pressure ramps in the presence of angiotensin II (pEC50) or papaverine (0.1 mM), respectively.

View Article and Find Full Text PDF

The effect of diabetes mellitus vs the effect of the Ren2 gene on the glomerular pathology of (mREN-2)27 heterozygous male rats is controversial. As discrete diabetes-induced glomerular lesions may have been overlooked, we performed a detailed morphometric analysis of glomeruli in diabetic and non-diabetic heterozygous male (mREN-2)27 rats and their normotensive (non-diabetic and diabetic Sprague-Dawley) controls. Glomeruli were scored by light microscopy for nine discrete histological parameters, some of which were graded for extent and/or severity.

View Article and Find Full Text PDF

Studies of gene regulation by oxygen have revealed novel signal pathways that regulate the hypoxia-inducible factor (HIF) transcriptional system through post-translational hydroxylation of specific prolyl and asparaginyl residues in HIF-alpha subunits. These oxygen-sensitive modifications are catalyzed by members of the 2-oxoglutarate (2-OG) dioxygenase family (PHD1, PHD2, PHD3, and FIH-1), raising an important question regarding the extent of involvement of these and other enzymes of the same family in directing the global changes in gene expression that are induced by hypoxia. To address this, we compared patterns of gene expression induced by hypoxia and by a nonspecific 2-OG-dependent dioxygenase inhibitor, dimethyloxalylglycine (DMOG), among a set of 22,000 transcripts, by microarray analysis of MCF7 cells.

View Article and Find Full Text PDF

Hypoxia-inducible factor (HIF) is a heterodimeric transcription factor that directs a broad range of cellular responses to hypoxia. Recent studies have defined a set of 2-oxoglutarate and Fe(II)-dependent dioxygenases that modify HIF-alpha subunits by prolyl and asparaginyl hydroxylation. These processes potentially provide a dual system of control, down-regulating both HIF-alpha stability and transcriptional activity.

View Article and Find Full Text PDF

Hypoxia-inducible factor-1 (HIF) is regulated by oxygen-dependent prolyl hydroxylation. Of the three HIF prolyl hydroxylases (PHD1, 2 and 3) identified, PHD3 exhibits restricted substrate specificity in vitro and is induced in different cell types by diverse stimuli. PHD3 may therefore provide an interface between oxygen sensing and other signalling pathways.

View Article and Find Full Text PDF