The kidney and brain share strain vessels, which are short and small arterioles that branch out of larger arteries. These vessels are vulnerable to risk factors such as atherosclerosis, old age, hypertension, diabetes, dyslipidemia, and smoking. The nervous system and the kidneys interact to maintain homeostasis.
View Article and Find Full Text PDFOrganelle stress exacerbates podocyte injury, contributing to perturbed lipid metabolism. Simultaneous organelle stresses can occur in the kidney in the diseased state; therefore, a thorough analysis of organelle communication is crucial for understanding the progression of kidney diseases. Although organelles closely interact with one another at membrane contact sites, limited studies have explored their involvement in kidney homeostasis.
View Article and Find Full Text PDFIn patients with chronic kidney disease (CKD), skeletal muscle mass and function are known to occasionally decline. However, the muscle regeneration and differentiation process in uremia has not been extensively studied. In mice with CKD induced by adenine-containing diet, the tibialis anterior muscle injured using a barium chloride injection method recovered poorly as compared to control mice.
View Article and Find Full Text PDFShort-chain fatty acids (SCFAs) are the end products of the fermentation of dietary fibers by the intestinal microbiota and reported to exert positive effects on host physiology. Acetate is the most abundant SCFA in humans and is shown to improve acute kidney injury in a mouse model of ischemia-reperfusion injury. However, how SCFAs protect the kidney and whether SCFAs have a renoprotective effect in chronic kidney disease (CKD) models remain to be elucidated.
View Article and Find Full Text PDF