Secretoglobins (SCGBs) are cytokine-like small molecular weight secreted proteins with largely unknown biological functions. Three SCGB proteins, SCGB1A1, SCGB3A1, and SCGB3A2, are predominantly expressed in lung airways. To gain insight into the possible functional relationships among the SCGBs, their protein and mRNA expression patterns were examined in lungs during gestation and in adult mice, using Scgb3a1-null and Scgb3a2-null mice as negative controls, by immunohistochemistry and by qRT-PCR analysis, respectively.
View Article and Find Full Text PDFAchaete-scute homologue-1 or ASCL1 (MASH1, hASH1) plays roles in neural development and pulmonary neuroendocrine (NE) differentiation, and it is expressed in certain lung cancers. This study was aimed to assess whether and/or how ASCL1 plays a role in 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced pulmonary NE hyperplasia and carcinogenesis in hamsters. Hamsters were injected 3 times weekly with either NNK or solvent alone (control) for treatment periods of 6 and 24 weeks, both without and with 6-week recovery.
View Article and Find Full Text PDFIntroduction: Because small-cell lung carcinomas (SCLC) are seldom resected, human materials for study are limited. Thus, genetically engineered mouse models (GEMMs) for SCLC and other high-grade lung neuroendocrine (NE) carcinomas are crucial for translational research.
Methods: The pathologies of five GEMMs were studied in detail and consensus diagnoses reached by four lung cancer pathology experts.
Lung cancer remains one of the leading causes of cancer-related deaths worldwide with a 5-year survival rate of less than 20%. One approach to improving survival is the identification of biomarkers to detect early stage disease. In this study, we investigated the potential of the stem cell and progenitor cell marker, Musashi1 (Msi1), as a diagnostic marker and potential therapeutic target for lung cancer.
View Article and Find Full Text PDFLung cancer is the leading cause of cancer-related deaths in the world. Achaete-scute complex homolog-1 (Ascl1) is a member of the basic helix-loop-helix (bHLH) transcription factor family that has multiple functions in the normal and neoplastic lung such as the regulation of neuroendocrine differentiation, prevention of apoptosis and promotion of tumor-initiating cells. We now show that Ascl1 directly regulates matrix metalloproteinase-7 (MMP-7) and O(6)-methylguanine-DNA methyltransferase (MGMT).
View Article and Find Full Text PDF