Rev Sci Instrum
November 2022
A heavy ion beam probe (HIBP) has been designed for the QUEST spherical tokamak to measure plasma turbulence and the profiles of electric potential profiles. Using a cesium ion beam with an energy of several 10 keV, the observable region covers most of the upper half of the plasma. Although the probe beam is deflected by the poloidal magnetic field produced by plasma current and poloidal coil currents, it can be detected under plasma current up to 150 kA by modifying the trajectories with two electrostatic sweepers.
View Article and Find Full Text PDFElectron cyclotron emission (ECE) imaging diagnostics incorporating a lensless approach have been developed for measurements involving active spatial selectivity and direction-of-arrival estimation. The Capon method for adaptive-array analysis was proposed to improve the spatial resolution of the two-dimensional ECE imaging technique. Broadband noise source emissions were used to simulate the ECE to verify the practical effectiveness of the Capon method in the ECE imaging.
View Article and Find Full Text PDFIn the GAMMA 10/PDX tandem mirror, plasma with strong ion-temperature anisotropy is produced by using the ion cyclotron range of frequency waves. This anisotropy of ion temperature causes several Alfvén-Ion-Cyclotron (AIC) waves to spontaneously excite in the frequency range just below the ion cyclotron frequency. In addition, difference-frequency (DF) waves are excited in the radial inner region of the plasma by wave-wave coupling among the AIC waves.
View Article and Find Full Text PDFAs technology has improved in recent years, it has become possible to create new valuable functions by combining various devices and sensors in a network. This concept is referred to as the Internet of Things (IoT), and predictive maintenance is a new valuable function associated with the IoT. In large-scale experimental facilities with many researchers, it is not desirable that experiments cannot be performed due to sudden failure of equipment.
View Article and Find Full Text PDFA two-channel microwave reflectometer system with fast microwave antenna switching capability was developed and applied to the GAMMA 10 tandem mirror device to study high-frequency small-amplitude fluctuations in a hot mirror plasma. The fast switching of the antennas is controlled using PIN diode switches, which offers the significant advantage of reducing the number of high-cost microwave components and digitizers with high bandwidths and large memory that are required to measure the spatiotemporal behavior of the high-frequency fluctuations. The use of two channels rather than one adds the important function of a simultaneous two-point measurement in either the radial direction or the direction of the antenna array to measure the phase profile of the fluctuations along with the normal amplitude profile.
View Article and Find Full Text PDF