This work demonstrates by in vacuo X-ray photoelectron spectroscopy and grazing-incidence X-ray diffraction that Ru(EtCp) and O radical-enhanced atomic layer deposition, where EtCp means the ethylcyclopentadienyl group, provides the growth of either RuO or Ru thin films depending on the deposition temperature (T), while different mechanisms are responsible for the growth of RuO and Ru. The thin films deposited at temperatures ranging from 200 to 260 °C consisted of polycrystalline rutile RuO phase revealing, according to atomic force microscopy and the four-point probe method, a low roughness (∼1.7 nm at 15 nm film thickness) and a resistivity of ≈83 µΩ cm.
View Article and Find Full Text PDFGhost imaging is a quantum optics technique that uses correlations between two beams to reconstruct an image from photons that do not interact with the object being imaged. While pairwise (second-order) correlations are usually used to create the ghost image, higher-order correlations can be utilized to improve the performance. In this Letter, we demonstrate higher-order atomic ghost imaging, using entangled ultracold metastable helium atoms from an s-wave collision halo.
View Article and Find Full Text PDF