Publications by authors named "R Husmann"

The ever-increasing antigenic diversity of the hemagglutinin (HA) of influenza A virus (IAV) poses a significant challenge for effective vaccine development. Notably, the matrix protein 2 (M2) is a highly conserved 97 amino acid long transmembrane tetrameric protein present in the envelope of IAV. More than 99 % of IAV strains circulating in American swine herds share the identical pandemic (pdm) isoform of M2, making it an ideal target antigen for a vaccine that could elicit broadly protective immunity.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome virus (PRRSV) is known to suppress the type I interferon (IFNs-α/β) response during infection. PRRSV also activates the NF-κB signaling pathway, leading to the production of proinflammatory cytokines during infection. In swine farms, co-infections of PRRSV and other secondary bacterial pathogens are common and exacerbate the production of proinflammatory cytokines, contributing to the porcine respiratory disease complex (PRDC) which is clinically a severe disease.

View Article and Find Full Text PDF

Background: Foreign-born kidney transplant recipients (FBKTRs) are at increased risk for reactivation of latent infections that may impact outcomes. We aimed to compare the etiology of infections and outcomes between FBKTR and United States KTRs (USKTR).

Methods: We performed a retrospective study of patients who underwent kidney transplantation between January 1, 2014 and December 31, 2018 at two transplant centers in Minnesota.

View Article and Find Full Text PDF

Viral respiratory infections predispose lungs to bacterial coinfections causing a worse outcome than either infection alone. Porcine reproductive and respiratory syndrome virus (PRRSV) causes pneumonia in pigs and is often associated with bacterial coinfections. We examined the impact of providing weanling pigs a -based direct-fed microbial (DFM) on the syndrome resulting from infection with either Salmonella enterica serotype Choleraesuis alone, or in combination with PRRSV.

View Article and Find Full Text PDF

The main target cells for African swine fever virus (ASFV) replication in pigs are of monocyte macrophage lineage and express markers typical of the intermediate to late stages of differentiation. The lack of a porcine cell line, which accurately represents these target cells, limits research on virus host interactions and the development of live-attenuated vaccine strains. We show here that the continuously growing, growth factor dependent ZMAC-4 porcine macrophage cell line is susceptible to infection with eight different field isolates of ASFV.

View Article and Find Full Text PDF