Publications by authors named "R Hrin"

Article Synopsis
  • Research on HIV-1 vaccines is focusing on conserved structural elements to target broadly neutralizing antibodies, particularly the D5 antibody which binds to a critical area on the viral gp41 protein.
  • Studies with different lengths of N-heptad repeat (NHR) peptides show that longer peptides can produce higher levels of neutralizing antibodies, indicating potential additional neutralizing areas beyond the D5 pocket.
  • The development of stabilized trimeric 51-mer peptides has shown promise in enhancing the immune response, resulting in better neutralization of HIV-1 compared to shorter peptides, highlighting the importance of peptide design in vaccine effectiveness.
View Article and Find Full Text PDF

MK-6186 is a novel nonnucleoside reverse transcriptase inhibitor (NNRTI) which displays subnanomolar potency against wild-type (WT) virus and the two most prevalent NNRTI-resistant RT mutants (K103N and Y181C) in biochemical assays. In addition, it showed excellent antiviral potency against K103N and Y181C mutant viruses, with fold changes (FCs) of less than 2 and 5, respectively. When a panel of 12 common NNRTI-associated mutant viruses was tested with MK-6186, only 2 relatively rare mutants (Y188L and V106I/Y188L) were highly resistant, with FCs of >100, and the remaining viruses showed FCs of <10.

View Article and Find Full Text PDF

We describe here a novel platform technology for the discovery of small molecule mimetics of conformational epitopes on protein antigens. As a model system, we selected mimetics of a conserved hydrophobic pocket within the N-heptad repeat region of the HIV-1 envelope protein, gp41. The human monoclonal antibody, D5, binds to this target and exhibits broadly neutralizing activity against HIV-1.

View Article and Find Full Text PDF

Optimization studies using an HIV RNase H active site inhibitor containing a 1-hydroxy-1,8-naphthyridin-2(1H)-one core identified 4-position substituents that provided several potent and selective inhibitors. The best compound was potent and selective in biochemical assays (IC(50)=0.045 μM, HIV RT RNase H; 13 μM, HIV RT-polymerase; 24 μM, HIV integrase) and showed antiviral efficacy in a single-cycle viral replication assay in P4-2 cells (IC(50)=0.

View Article and Find Full Text PDF

Studies were conducted to investigate mutation pathways among subtypes A, B, and C of human immunodeficiency virus type 1 (HIV-1) during resistance selection with nonnucleoside reverse transcriptase inhibitors (NNRTIs) in cell culture under low-multiplicity of infection (MOI) conditions. The results showed that distinct pathways were selected by different virus subtypes under increasing selective pressure of NNRTIs. F227C and Y181C were the major mutations selected by MK-4965 in subtype A and C viruses during resistance selection.

View Article and Find Full Text PDF