Eur J Nucl Med Mol Imaging
January 2025
Purpose: PSMA-PET is a reference standard examination for patients with prostate cancer, but even using recently introduced digital PET detectors image acquisition with standard field-of-view scanners is still in the range of 20 min. This may cause limited access to examination slots because of the growing demand for PSMA-PET. Ultra-fast PSMA-PET may enhance throughput but comes at the cost of poor image quality.
View Article and Find Full Text PDFObjective: Commercially available large language models such as Chat Generative Pre-Trained Transformer (ChatGPT) cannot be applied to real patient data for data protection reasons. At the same time, de-identification of clinical unstructured data is a tedious and time-consuming task when done manually. Since transformer models can efficiently process and analyze large amounts of text data, our study aims to explore the impact of a large training dataset on the performance of this task.
View Article and Find Full Text PDFRadiography (Lond)
January 2025
Background: Facial recognition technology in medical imaging, particularly with head scans, poses privacy risks due to identifiable facial features. This study evaluates the use of facial recognition software in identifying facial features from head CT scans and explores a defacing pipeline using TotalSegmentator to reduce re-identification risks while preserving data integrity for research.
Methods: 1404 high-quality renderings from the UCLH EIT Stroke dataset, both with and without defacing were analysed.
Background: Non-malignant chronic diseases remain a major public health concern. Given the alterations in lipid metabolism and deposition in the lung and its association with fibrotic interstitial lung disease (fILD) and chronic obstructive pulmonary disease (COPD), this study aimed to detect those alterations using computed tomography (CT)-based analysis of pulmonary fat attenuation volume (CTpfav).
Methods: This observational retrospective single-center study involved 716 chest CT scans from three subcohorts: control (n = 279), COPD (n = 283), and fILD (n = 154).