The physical interactions between organisms and their environment ultimately shape diversification rates, but the contributions of biomechanics to evolutionary divergence are frequently overlooked. Here, we estimated a performance landscape for biting in an adaptive radiation of Cyprinodon pupfishes, including scale-biting and molluscivore specialists, and compared performance peaks with previous estimates of the fitness landscape in this system. We used high-speed video to film feeding strikes on gelatin cubes by scale eater, molluscivore, generalist and hybrid pupfishes and measured bite dimensions.
View Article and Find Full Text PDFThe physical interactions between organisms and their environment ultimately shape their rate of speciation and adaptive radiation, but the contributions of biomechanics to evolutionary divergence are frequently overlooked. Here we investigated an adaptive radiation of pupfishes to measure the relationship between feeding kinematics and performance during adaptation to a novel trophic niche, lepidophagy, in which a predator removes only the scales, mucus, and sometimes tissue from their prey using scraping and biting attacks. We used high-speed video to film scale-biting strikes on gelatin cubes by scale-eater, molluscivore, generalist, and hybrid pupfishes and subsequently measured the dimensions of each bite.
View Article and Find Full Text PDFThe coronavirus disease 2019 (COVID-19) pandemic has caused more than 675 million confirmed cases and nearly 7 million deaths worldwide [1]. While testing for COVID-19 was initially centered in health care facilities, with required reporting to health departments, it is increasingly being performed in the home with rapid antigen testing [2]. Most at-home tests are self-interpreted and not reported to a provider or health department, which could lead to delayed reporting or underreporting of cases [3].
View Article and Find Full Text PDF