A highly conserved second-sphere active site αSer residue in nitrile hydratase (NHase), that forms a hydrogen bond with the axial metal-bound water molecule, was mutated to Ala, Asp, and Thr, in the Co-type NHase from Pseudonocardia thermophila JCM 3095 (PtNHase) and to Ala and Thr in the Fe-type NHase from Rhodococcus equi TG328-2 (ReNHase). All five mutants were successfully purified; metal analysis via ICP-AES indicated that all three Co-type PtNHase mutants were in their apo-form while the Fe-type αSer117Ala and αSer117Thr mutants contained 85 and 50 % of their active site Fe(III) ions, respectively. The k values obtained for the PtNHase mutant enzymes were between 0.
View Article and Find Full Text PDFChlorothalonil (2,4,5,6-tetrachloroisophthalonitrile; TPN) is an environmentally persistent fungicide that sees heavy use in the USA and is highly toxic to aquatic species and birds, as well as a probable human carcinogen. The chlorothalonil dehalogenase from Pseudomonas sp. CTN-3 (Chd, UniProtKB C9EBR5) degrades TPN to its less toxic 4-OH-TPN analog making it an exciting candidate for the development of a bioremediation process for TPN; however, little is currently known about its catalytic mechanism.
View Article and Find Full Text PDFTwo conserved second-sphere βArg (R) residues in nitrile hydratases (NHase), that form hydrogen bonds with the catalytically essential sulfenic and sulfinic acid ligands, were mutated to Lys and Ala residues in the Co-type NHase from Pseudonocardia thermophila JCM 3095 (PtNHase) and the Fe-type NHase from Rhodococcus equi TG328-2 (ReNHase). Only five of the eight mutants (PtNHase βR52A, βR52K, βR157A, βR157K and ReNHase βR61A) were successfully expressed and purified. Apart from the PtNHase βR52A mutant that exhibited no detectable activity, the k values obtained for the PtNHase and ReNHase βR mutant enzymes were between 1.
View Article and Find Full Text PDFTriazine hydrolase from TC1 (TrzN) was successfully immobilized on mesoporous silica nanomaterials (MSNs) for the first time. For both nonfunctionalized MSNs and MSNs functionalized with Zn(II), three pore sizes were evaluated for their ability to immobilize wild-type TrzN: Mobile composition of matter no. 41 (small, 3 nm pores), mesoporous silica nanoparticle material with 10 nm pore diameter (MSN-10) (medium, 6-12 nm pores), and pore-expanded MSN-10 (large, 15-30 nm pores).
View Article and Find Full Text PDF