We introduce two water-soluble excited state intramolecular proton transfer (ESIPT) based fluorescent turn-on probes responding to inorganic polyphosphates. These ESIPT probes enable specific detection of short-chain inorganic polyphosphates over a range of different condensed phosphates. The probes are weakly emissive in their off-state due to the blocking of ESIPT by Cu coordination.
View Article and Find Full Text PDFLong-term records of combined stream flow and water chemistry can be an invaluable source of information on changes in the quantity and quality of water resources. To understand the effect of hydroclimate and water management on the heavily urbanized Panke catchment in Berlin, Germany, an extensive search, collation and digitization of historic data from various sources was undertaken. This integrated a unique 66-year spatially distributed record of stream water quality, a 21-year record of groundwater quality and a 31-year stream flow record.
View Article and Find Full Text PDFEnviron Monit Assess
December 2022
Eutrophication problem in El Gouna shallow artificial coastal lagoons in Egypt was investigated using 2D TELEMAC-EUTRO-WAQTEL module. Eight reactive components were presented, among them dissolved oxygen (DO), phosphorus, nitrogen, and phytoplankton biomass (PHY). The effect of warmer surface water on the eutrophication problem was investigated.
View Article and Find Full Text PDFAn integral approach which can simultaneously model turbulent flow and transport at the sediment-water interface has been recently developed and validated for homogeneous sediment which was achieved by comparing numerical results to flume experiments on flow and transport over a rippled streambed and through the sediment for neutral, gaining, and losing conditions. In the present study, we validated the approach for heterogeneous conditions by comparing numerical simulations of flow and transport in heterogeneous sediment to analytical solutions as well as flume experiments on flow and transport through rippled streambed consisting of heterogeneous sediment. For this complex setup, simulation and experimental results agree well showing that flow and tracer transport prefer paths through areas with bigger grain diameters and higher porosities.
View Article and Find Full Text PDFThis study evaluates the potential of kriging-based (kriging and kriging-logistic) and machine learning models (MARS, GBRT, and ANN) in predicting the effluent arsenic concentration of a wastewater treatment plant. Two distinct input combination scenarios were established, using seven quantitative and qualitative independent influent variables. In the first scenario, all of the seven independent variables were taken into account for constructing the data-driven models.
View Article and Find Full Text PDF