We have characterized and mapped the electrical cross talk (ECT) of a frequency division multiplexing (FDM) system with a transition edge sensor (TES) bolometer array, which is intended for space applications. By adding a small modulation at 120 Hz to the AC bias voltage of one bolometer and measuring the cross talk response in the current noise spectra of the others simultaneously, we have for the first time mapped the ECT level of 61 pixels with a nominal frequency spacing of 32 kHz in a 61 × 61 matrix and a carrier frequency ranging from 1 MHz to 4 MHz. We find that about 94% of the pixels show an ECT level of less than 0.
View Article and Find Full Text PDFThe next generation of far infrared space observatories will require extremely sensitive detectors that can be realized only by combining extremely low intrinsic noise with high optical efficiency. We have measured the broad-band optical response of ultra-sensitive transtion edge sensor (TES) bolometers (NEP≈2aW/Hz) in the 30-60-μm band where radiation is coupled to the detectors with a few-moded conical feedhorn and a hemispherical backshort. We show that these detectors have an optical efficiency of 60% (the ratio of the power detected by the TES bolometer to the total power propagating through the feedhorn).
View Article and Find Full Text PDF