Publications by authors named "R Hidalgo-Alvarez"

The equilibrium structure and dynamics of magnetorheological (MR) fluids are studied in this work by simulations, where particles are modeled as dipoles with a quasihard spherical core. Upon increasing the interaction strength, controlled experimentally by the magnetic field, elongated clusters grow and, for intense fields, thick columns form, aligned with the field. The dynamics of the system is monitored by the mean-squared displacement and density correlation functions, which show an increasing slowing down with the attraction strength.

View Article and Find Full Text PDF

Particles adsorbed at liquid interfaces are commonly used to stabilise water-oil Pickering emulsions and water-air foams. The fundamental understanding of the physics of particles adsorbed at water-air and water-oil interfaces is improving significantly due to novel techniques that enable the measurement of the contact angle of individual particles at a given interface. The case of non-aqueous interfaces and emulsions is less studied in the literature.

View Article and Find Full Text PDF

Gold patchy nanoparticles (PPs) were prepared under surfactant-free conditions by functionalization with a binary ligand mixture of polystyrene and poly(ethylene glycol) (PEG) as hydrophobic and hydrophilic ligands, respectively. The interfacial activity of PPs was compared to that of homogeneous hydrophilic nanoparticles (HPs), fully functionalized with PEG, by means of pendant drop tensiometry at water/air and water/decane interfaces. We compared interfacial activities in three different spreading agents: water, water/chloroform, and pure chloroform.

View Article and Find Full Text PDF

The mean magnetization (MM) approximation is undoubtedly the most widely used approximation in magnetorheology both from theoretical and simulation perspectives. According to this, spherical magnetizable particles under field can be replaced by effective dipole moments m placed at their center with strength m = V(p)⟨M(p)⟩. Here V(p) and ⟨M(p)⟩ are the volume and mean (average) magnetization of the particles, respectively.

View Article and Find Full Text PDF

Janus gold nanoparticles (JPs) of ∼4 nm-diameter half functionalized with 1-hexanethiol as a hydrophobic capping ligand exhibit significantly higher interfacial activity, reproducibility and rheological response when the other half is functionalized with 1,2-mercaptopropanediol (JPs-MPD) than with 2-(2-mercaptoethoxy)ethanol (JPs-MEE), both acting as hydrophilic capping ligands. The interfacial pressure measured by pendant drop tensiometry reaches 50 mN m(-1) and 35 mN m(-1) for the JPs-MPD at the water/air and water/decane interface, respectively. At the same area per particle, the JPs-MEE reveal significantly lower interfacial pressure: 15 mN m(-1) and 5 mN m(-1) at the water/air and water/decane interface, respectively.

View Article and Find Full Text PDF