Bruton's tyrosine kinase (BTK) is a member of the TEC kinase family and is selectively expressed in a subset of immune cells. It is a key regulator of antigen receptor signaling in B cells and of Fc receptor signaling in mast cells and macrophages. A BTK inhibitor will likely have a positive impact on autoimmune diseases which are caused by autoreactive B cells and immune-complex driven inflammation.
View Article and Find Full Text PDFMALT1 paracaspase is central for lymphocyte antigen-dependent responses including NF-κB activation. We discovered nanomolar, selective allosteric inhibitors of MALT1 that bind by displacing the side chain of Trp580, locking the protease in an inactive conformation. Interestingly, we had previously identified a patient homozygous for a MALT1 Trp580-to-serine mutation who suffered from combined immunodeficiency.
View Article and Find Full Text PDFMAP-activated protein kinase 2 (MK2) plays an important role in the regulation of innate immune response as well as in cell survival upon DNA damage. Despite its potential for the treatment of inflammation and cancer, to date no MK2 low molecular weight inhibitors have reached the clinic, mainly due to inadequate absorption, distribution, metabolism, and excretion (ADME) properties. We describe here an approach based on specifically placed fluorine within a recently described pyrrole-based MK2 inhibitor scaffold for manipulation of its physicochemical and ADME properties.
View Article and Find Full Text PDFRational: Homeostasis of vascular barriers depends upon sphingosine 1-phosphate (S1P) signaling via the S1P1 receptor. Accordingly, S1P1 competitive antagonism is known to reduce vascular barrier integrity with still unclear pathophysiological consequences. This was explored in the present study using NIBR-0213, a potent and selective S1P1 competitive antagonist.
View Article and Find Full Text PDFA prodrug approach to optimize the oral exposure of a series of sphingosine 1-phosphate receptor 1 (S1P(1)) antagonists for chronic efficacy studies led to the discovery of (S)-2-{[3'-(4-chloro-2,5-dimethylphenylsulfonylamino)-3,5-dimethylbiphenyl-4-carbonyl]methylamino}-4-dimethylaminobutyric acid methyl ester 14. Methyl ester prodrug 14 is hydrolyzed in vivo to the corresponding carboxylic acid 15, a potent and selective S1P(1) antagonist. Oral administration of the prodrug 14 induces sustained peripheral blood lymphocyte reduction in rats.
View Article and Find Full Text PDF