Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder resulting from a polyglutamine expansion in the huntingtin (HTT) protein. There is currently no cure for this disease, but recent studies suggest that RNAi to downregulate the expression of both normal and mutant HTT is a promising therapeutic approach. We previously developed a small hairpin RNA (shRNA), vectorized in an HIV-1-derived lentiviral vector (LV), that reduced pathology in an HD rodent model.
View Article and Find Full Text PDFHuntington's disease (HD) is an autosomal dominant neurodegenerative disorder resulting from polyglutamine expansion in the huntingtin (HTT) protein and for which there is no cure. Although suppression of both wild type and mutant HTT expression by RNA interference is a promising therapeutic strategy, a selective silencing of mutant HTT represents the safest approach preserving WT HTT expression and functions. We developed small hairpin RNAs (shRNAs) targeting single nucleotide polymorphisms (SNP) present in the HTT gene to selectively target the disease HTT isoform.
View Article and Find Full Text PDFMachado-Joseph disease or spinocerebellar ataxia type 3 (MJD/SCA3) is a fatal, autosomal dominant disorder caused by a cytosine-adenine-guanine expansion in the coding region of the MJD1 gene. RNA interference has potential as a therapeutic approach but raises the issue of the role of wild-type ataxin-3 (WT ATX3) in MJD and of whether the expression of the wild-type protein must be maintained. To address this issue, we both overexpressed and silenced WT ATX3 in a rat model of MJD.
View Article and Find Full Text PDFObjective: Huntington's disease (HD) is a fatal autosomal dominant neurodegenerative disorder caused by a polyglutamine expansion in the huntingtin (htt) protein. No cure is available to date to alleviate neurodegeneration. Recent studies have demonstrated that RNA interference represents a promising approach for the treatment of autosomal dominant disorders.
View Article and Find Full Text PDFHuntington's disease (HD) is a neurodegenerative disorder resulting from the expansion of a glutamine repeat (polyQ) in the N-terminus of the huntingtin (htt) protein. Expression of polyQ-containing proteins has been previously shown to induce various cellular stress responses. Among these, activation of the c-Jun N-terminal kinase (JNK) cascade has been observed in cellular models of HD.
View Article and Find Full Text PDF