Chemical exposure in the environment can adversely affect the biodiversity of living organisms, particularly when persistent chemicals accumulate over time and disrupt the balance of microbial populations. In this study, we examined how chemical contaminants influence microorganisms in sediment and overlaying water samples collected from the Kinnickinnic, Milwaukee, and Menomonee Rivers near Milwaukee, Wisconsin, USA. We characterized these samples using shotgun metagenomic sequencing to assess microbiome diversity and employed chemical analyses to quantify more than 200 compounds spanning 16 broad classes, including pesticides, industrial products, personal care products, and pharmaceuticals.
View Article and Find Full Text PDFIntroduction: Acute mountain sickness (AMS) is a common altitude illness that occurs when individuals rapidly ascend to altitudes ≥2,500 m without proper acclimatization. Genetic and genomic factors can contribute to the development of AMS or predispose individuals to susceptibility. This study aimed to investigate differential gene regulation and biological pathways to diagnose AMS from high-altitude (HA; 4,300 m) blood samples and predict AMS-susceptible (AMS+) and AMS-resistant (AMS─) individuals from sea-level (SL; 50 m) blood samples.
View Article and Find Full Text PDFA significantly low success rate of human clinical studies has long been attributed to a capability gap, namely, an ineffective translation of the animal data to the human context. To bridge this capability gap, several correcting measures have been evaluated; using a strict guideline to select animal models for a given disease and implementing alternative models such as tissues-on-chip are some of them. Current hypothesis tells that there is a basic similarity in responding to a stress between human and those mammals that precede human in the phylogenetic tree; however, the corresponding molecular mechanisms are not exactly the same across these species.
View Article and Find Full Text PDFSaliva, a readily available and noninvasive biofluid, has emerged as a promising source for gene expression studies, offering a window into both local and systemic gene expression patterns. The salivary transcriptome and miRNome hold valuable information about the physiological and pathological processes occurring in the oral cavity and throughout the body.This chapter delves into the potential of saliva as a noninvasive sampling method, exploring its utility in gene expression profiling for various applications.
View Article and Find Full Text PDFRehabilitation from musculoskeletal injuries (MSKI) complicate healing dynamics typically by sustained disuse of bone and muscles. Microgravity naturally allows limb disuse and thus an effective model to understand MSKI. The current study examined epigenetic changes in a segmental bone defect (SBD) mouse model in a prolonged unloading condition after spaceflight (FLT).
View Article and Find Full Text PDF