Publications by authors named "R Hallewell"

Physicians take time out of training for a variety of reasons and, on their return, they often lack confidence and feel 'out of touch'. These trainees require enhanced support and concerns have been raised about trainers' lack of skills and knowledge in this area. A standardised workshop was developed and delivered to address this with a mixed-methods evaluation approach used to analyse data from participants before and after training.

View Article and Find Full Text PDF

Mutations in Cu/Zn superoxide dismutase (SOD) are associated with the fatal neurodegenerative disorder amyotrophic lateral sclerosis (ALS). There is considerable evidence that mutant SOD has a gain of toxic function; however, the mechanism of this toxicity is not known. We report here that purified SOD forms aggregates in vitro under destabilizing solution conditions by a process involving a transition from small amorphous species to fibrils.

View Article and Find Full Text PDF

There is evidence that raising cellular levels of Cu2+/Zn2+ superoxide dismutase (SOD1) can protect neurons from oxidative injury. We compared a novel method of elevating neuronal SOD activity using a recombinant hybrid protein composed of the atoxic neuronal binding domain of tetanus toxin (C fragment or TTC) and human SOD1 (hSOD1) with increasing cellular SOD levels through overexpression. Fetal murine cortical neurons or N18-RE-105 cells were incubated with the TTC-hSOD1 hybrid protein and compared to cells constitutively expressing hSOD1 for level of SOD activity, cellular localization of hSOD1, and capacity to survive glucose and pyruvate starvation.

View Article and Find Full Text PDF

Inactivation of copper- and zinc-containing superoxide dismutase (Cu,ZnSOD) by H2O2 is the consequence of several sequential reactions: reduction of the active site Cu(II) to Cu(I) by H2O2; oxidation of the Cu(I) by a second H2O2, thus generating a powerful oxidant, which may be Cu(I)O or Cu(II)OH or Cu(III); and finally oxidation of one of the histidines in the ligand field, causing loss of SOD activity. Three familial amyotrophic lateral sclerosis (FALS)-associated mutant Cu,ZnSODs, i.e.

View Article and Find Full Text PDF

Tyrosine 34 is a prominent and conserved residue in the active site of the manganese superoxide dismutases in organisms from bacteria to man. We have prepared the mutant containing the replacement Tyr 34 --> Phe (Y34F) in human manganese superoxide dismutase (hMnSOD) and crystallized it in two different crystal forms, orthorhombic and hexagonal. Crystal structures of hMnSOD Y34F have been solved to 1.

View Article and Find Full Text PDF