Background: The search for an accurate, gene-based test to identify heritable risk factors for Reward Deficiency Syndrome (RDS) was conducted based on hundreds of published studies about the role of dopamine in addictive behaviors, including risk for drug dependence and compulsive/impulsive behavior disorders. The term RDS was first coined by Blum's group in 1995 to identify a group of behaviors with a common neurobiological mechanism associated with a polymorphic allelic propensity for hypodopaminergia.
Objectives: To outline the process used to select risk alleles of reward genes for the Genetic Addiction Risk Score (GARS) test.
In the face of the current Opioid crisis in America killing close to 800,000 people since 2004, we are proposing a novel approach to assist in at least attenuating these unwanted premature deaths. While we applaud the wonderful efforts of our governmental institutes and professional societies (NIDA, NIAAA, ASAM, ABAM ) in their extraordinary efforts in combating this continued dilemma, the current approach is failing, and other alternative approaches should at least be tested. These truths present a serious ethical dilemma to scientists, clinicians and counselors in the Reward Deficiency Syndrome (RDS) treatment community.
View Article and Find Full Text PDFEarly onset effects of methylmercury (MeHg) on recombinant αβγ or αβγ subunit-containing GABA receptors were examined. These are two of the most prevalent receptor types found in cerebellum-a consistent target of MeHg-induced neurotoxicity. Heterologously expressed receptors were used in order to: (1) isolate receptor-mediated events from extraneous effects of MeHg due to stimulation of the receptor secondary to increased release of GABA seen with MeHg in neurons in situ and (2) limit the phenotypes of GABA receptors present at one time.
View Article and Find Full Text PDF