We apply external uniaxial stress to tailor the optical properties of In(x)Ga(1-x)As/GaAs quantum dots. Unexpectedly, the emission energy of single quantum dots controllably shifts to both higher and lower energies under tensile strain. Theoretical calculations using a million atom empirical pseudopotential many-body method indicate that the shifting direction and magnitude depend on the lateral extension and more interestingly on the gallium content of the quantum dots.
View Article and Find Full Text PDFLow density (approximately 10(7) cm(-2)), small sized InGaAs quantum dots were grown on a GaAs substrate by metal-organic vapor-phase epitaxy and a special annealing technique. The structural quantum dot properties and the influence of the annealing technique was investigated by atomic force microscope measurements. High-resolution micro-photoluminescence spectra reveal narrow photoluminescence lines, with linewidths down to 11 microeV and fine structure splittings of 25 microeV.
View Article and Find Full Text PDF