In their environment, plants are exposed to a multitude of abiotic and biotic stresses that differ in intensity, duration and severity. As sessile organisms, they cannot escape these stresses, but instead have developed strategies to overcome them or to compensate for the consequences of stress exposure. Defence can take place at different levels and the mechanisms involved are thought to differ in efficiency across these levels.
View Article and Find Full Text PDFInteraction of different environmental constrains pose severe threats to plants that cannot be predicted from individual stress exposure. In this context, mercury (Hg), as a typical toxic and hazardous heavy metal, has recently attracted particular attention. Nitrogen (N)-fixing legumes can be used for phytoremediation of Hg accumulation, whereas N availability could greatly affect its N-fixation efficiency.
View Article and Find Full Text PDFInfection with the necrotrophic fungus Diplodia sapinea (Fr.) Fuckel is among the economically and ecologically most devastating diseases of conifers in the northern hemisphere and is accelerated by global climate change. This study aims to characterize the changes mediated by D.
View Article and Find Full Text PDFSci Total Environ
January 2017
Chelates such as ethylenediaminetetraacetic acid (EDTA) enter soils via various sources but their effect on agricultural crops is mostly unknown. Sources of EDTA include industry, households, sewage water and agricultural practices. In a field experiment EDTA was applied in its free form at different rates (0, 150, 550, 1050kgha) to study its translocation in the soil profile and to evaluate its effect on yield and mineral composition of the cultivated crop, both in the year of application (oilseed rape) and in the following year (winter wheat).
View Article and Find Full Text PDF