The inability of lactose to properly crystallize due to the presence of high amounts of salts poses significant hurdles for its downstream processing with some dairy waste streams such as acid whey. This study aimed to investigate the physicochemical and thermal behaviors of lactose in the presence of cations commonly present in acid whey. A model-based study was conducted, utilizing various cations (Mg, Ca, K, and Na) at concentrations (8, 30, 38, and 22 mM, respectively) that are typically found in acid whey.
View Article and Find Full Text PDFThe presence of acids in a lactose-containing system can affect its crystallization. The crystallization kinetics of lactose solutions were investigated as affected by lactic, citric, or phosphoric acid at a concentration of 0.05, 1, or 4% (wt/wt) as compared with that of pure lactose.
View Article and Find Full Text PDFPhysical properties of lactose appeared influenced by presence of lactic acid in the system. Some other components such as Ca may further attenuate lactose behaviour and impact its phase transition. A model-based study was thus implemented with varying concentrations of Ca (0·12, 0·072 or 0·035% w/w) and lactic acid (0·05, 0·2, 0·4 or 1% w/w) in establishing the effects of these two main acid whey constituents on lactose phase behaviour.
View Article and Find Full Text PDF