Publications by authors named "R H Paulssen"

The study aimed to identify common differentially expressed lncRNAs from manually curated ulcerative colitis (UC) gene expression omnibus (GEO) datasets. Nine UC transcriptomic datasets of clearly annotated human colonic biopsies were included in the study. The datasets were manually curated to select active UC samples and controls.

View Article and Find Full Text PDF

DNA methylation has been implied to play a role in the immune dysfunction associated with inflammatory bowel disease (IBD) and the disease development of ulcerative colitis (UC). Changes of the DNA methylation and correlated gene expression in patient samples with inactive UC might reveal possible regulatory features important for further treatment options for UC. Targeted bisulfite sequencing and whole transcriptome sequencing were performed on mucosal biopsies from patients with active UC (UC, n = 14), inactive UC (RM, n = 20), and non-IBD patients which served as controls (NN, n = 11).

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) have been shown to play a role in the pathogenesis of ulcerative colitis (UC). Although epigenetic processes such as DNA methylation and lncRNA expression are well studied in UC, the importance of the interplay between the two processes has not yet been fully explored. It is, therefore, believed that interactions between environmental factors and epigenetics contribute to disease development.

View Article and Find Full Text PDF

Due to the lack of clinical, immunologic, genetic, and laboratory markers to predict remission in ulcerative colitis (UC) without relapse, there is no clear recommendation regarding withdrawal of therapy. Therefore, this study was to investigate if transcriptional analysis together with Cox survival analysis might be able to reveal molecular markers that are specific for remission duration and outcome. Mucosal biopsies from patients in remission with active treatment-naïve UC and healthy control subjects underwent whole-transcriptome RNA-seq.

View Article and Find Full Text PDF