Background: The innate immune response is important for the development of the specific adaptive immunity, however it may also be associated with reactogenicity after vaccination. We explore the association between innate responsiveness, reactogenicity, and antibody response after first COVID-19 vaccination.
Methods: We included 146 healthy Dutch individuals aged 12-59 who received their first BNT162b2 (Comirnaty, Pfizer) COVID-19 vaccination.
Background: To date, it is still not clear why during the COVID-19 pandemic children generally developed no or milder symptoms compared to adults. As innate immune responses are crucial in the early defense against pathogens, we aimed at profiling these responses from both adults and children with a primary SARS-CoV-2 infection.
Methods: In the first months of the pandemic, PBMCs and serum were collected from peripheral blood of adults and children at different time points after testing SARS-CoV-2 PCR positive (PCR+).
Domain Generation Algorithms (DGAs) are used by malware to generate pseudorandom domain names to establish communication between infected bots and command and control servers. While DGAs can be detected by machine learning (ML) models with great accuracy, offering DGA detection as a service raises privacy concerns when requiring network administrators to disclose their DNS traffic to the service provider. The main scientific contribution of this paper is to propose the first end-to-end framework for privacy-preserving classification as a service of domain names into DGA (malicious) or non-DGA (benign) domains.
View Article and Find Full Text PDFATP-sensitive potassium (KATP) channels couple cell metabolism to cellular electrical activity. Humans affected by severe activating mutations in KATP channels suffer from developmental delay, epilepsy and neonatal diabetes (DEND syndrome). While the aetiology of diabetes in DEND syndrome is well understood, the pathophysiology of the neurological symptoms remains unclear.
View Article and Find Full Text PDFEnergy transfer between orthogonally arranged chromophores is typically considered impossible according to conventional Förster resonance energy transfer theory. Nevertheless, the disruption of orthogonality by nuclear vibrations can enable energy transfer, what has prompted the necessity for formal expansions of the standard theory. Here, we propose that there is no need to extend conventional Förster theory in such cases.
View Article and Find Full Text PDF