In this work, we developed novel nanocomposite three-dimensional (3D) scaffolds composed of chitosan (CTS), halloysite nanotubes (HNTs) and silver nanoparticles (AgNPs) with enhanced antimicrobial activity and fibroblast cell compatibility for their potential use in wound dressing applications. A stock CTS-HNT solution was obtained by mixing water-dispersed HNTs with CTS aqueous-acid solution, and then, AgNPs, in different concentrations, were synthesized in the CTS-HNT solution a CTS-mediated reduction method. Finally, freeze-gelation was used to obtain CTS-HNT-AgNP 3D porous scaffolds (sponges).
View Article and Find Full Text PDFNanotechnology
May 2024
For the first time, this study shows the nanoarchitectonic process to obtain an acetogenin-enriched nanosystem (AuNPs-Ac) using an aqueous extract fromMill (ACM) composed of gold nanoparticles embedded in an organic matrix that acts as stabilizing agent and presents anti-inflammatory activity and cytotoxical effect against HepG2 cell line, promoting apoptosis. The synthesis of AuNPs-Ac was confirmed by x-ray diffraction analysis, showing metallic gold as the only phase, and the scanning transmission microscope showed an organic cap covering the AuNPs-Ac. Fourier-transformed infrared suggests that the organic cap comprises a combination of different annonaceous acetogenins, alkaloids, and phenols by the presence of bands corresponding to aromatic rings and hydroxyl groups.
View Article and Find Full Text PDF