The inner ears of all vertebrates are designed to perceive auditory and vestibular inputs. Although a tremendous diversity in the inner ear can be found even among bony fishes, the morphologies of the utricle and of the semicircular canals are rather conservative among vertebrates. Fish show kinetoses under reduced gravity (spinning movements and looping responses) and are regarded model organisms concerning the performance of the otolithic organs.
View Article and Find Full Text PDFThe gravity-dependent behavior of Paramecium biaurelia and Euglena gracilis have previously been studied on ground and in real microgravity. To validate whether high magnetic field exposure indeed provides a ground-based facility to mimic functional weightlessness, as has been suggested earlier, both cell types were observed during exposure in a strong homogeneous magnetic field (up to 30 T) and a strong magnetic field gradient. While swimming, Paramecium cells were aligned along the magnetic field lines; orientation of Euglena was perpendicular, demonstrating that the magnetic field determines the orientation and thus prevents the organisms from the random swimming known to occur in real microgravity.
View Article and Find Full Text PDFResearch in microgravity is indispensable to disclose the impact of gravity on biological processes and organisms. However, research in the near-Earth orbit is severely constrained by the limited number of flight opportunities. Ground-based simulators of microgravity are valuable tools for preparing spaceflight experiments, but they also facilitate stand-alone studies and thus provide additional and cost-efficient platforms for gravitational research.
View Article and Find Full Text PDFStato- or otoliths are calcified structures in the organ of balance and equilibrium of vertebrates, the inner ear, where they enhance its sensitivity to gravity. The compact otoliths of fish are composed of the calcium carbonate polymorph aragonite and a small fraction of organic molecules. The latter form a protein skeleton which determines the morphology of an otolith as well as its crystal lattice structure.
View Article and Find Full Text PDFHumans taking part in parabolic aircraft flights (PAFs) may suffer from space motion sickness (SMS, a kinetosis). Since it has been repeatedly shown earlier that some fish of a given batch also reveal a kinetotic behavior during PAFs (especially so-called spinning movements and looping responses) and due to the homology of the vestibular apparatus among all vertebrates, fish can be used as model systems to investigate the origin of susceptibility to motion sickness. Therefore, we examined the utricular maculae (they are responsible for the internalization of gravity in teleosteans) of fish swimming kinetotically at microgravity in comparison with animals from the same batch who swam normally.
View Article and Find Full Text PDF