Only four species, , , , and , together account for about 90% of all bloodstream infections and are among the most common causes of invasive fungal infections of humans. However, virulence potential varies among these species, and the phylogenetic tree reveals that their pathogenicity may have emerged several times independently during evolution. We therefore tested these four species in a human whole-blood infection model to determine, via comprehensive dual-species RNA-sequencing analyses, which fungal infection strategies are conserved and which are recent evolutionary developments.
View Article and Find Full Text PDFInflammation has been recognized as essential for restorative regeneration. Here, we analyzed the sequential processes during onset of liver injury and subsequent regeneration based on time-resolved transcriptional regulatory networks (TRNs) to understand the relationship between inflammation, mature organ function, and regeneration. Genome-wide expression and TRN analysis were performed time dependently in mouse liver after acute injury by CCl (2 h, 8 h, 1, 2, 4, 6, 8, 16 days), as well as lipopolysaccharide (LPS, 24 h) and compared to publicly available data after tunicamycin exposure (mouse, 6 h), hepatocellular carcinoma (HCC, mouse), and human chronic liver disease (non-alcoholic fatty liver, HBV infection and HCC).
View Article and Find Full Text PDFGiven the important role of angiogenesis in liver pathology, the current study investigated the role of Runt-related transcription factor 1 (RUNX1), a regulator of developmental angiogenesis, in the pathogenesis of non-alcoholic steatohepatitis (NASH). Quantitative RT-PCRs and a transcription factor analysis of angiogenesis-associated differentially expressed genes in liver tissues of healthy controls, patients with steatosis and NASH, indicated a potential role of in NASH. The gene expression of was correlated with histopathological attributes of patients.
View Article and Find Full Text PDFThe original version of this Article contained an error in the spelling of the author Jule Müller, which was incorrectly given as Julia Müller. Additionally, in Fig. 4a, the blue-red colour scale for fold change in ageing/disease regulation included a blue stripe in place of a red stripe at the right-hand end of the scale.
View Article and Find Full Text PDFIntroduction: Stable isotopic labeling experiments are powerful tools to study metabolic pathways, to follow tracers and fluxes in biotic and abiotic transformations and to elucidate molecules involved in metal complexing.
Objective: To introduce a software tool for the identification of isotopologues from mass spectrometry data.
Methods: DeltaMS relies on XCMS peak detection and XCMS isotopologue grouping and then analyses data for specific isotope ratios and the relative error of these ratios.