The transition from weak to strong turbulence when passing from large to small scales in magnetohydrodynamic (MHD) turbulence with guide field is a cornerstone of anisotropic turbulence theory. We present the first check of this transition, using the Shell-RMHD, which combines a shell model of perpendicular nonlinear coupling and linear propagation along the guide field. This model allows us to reach Reynolds numbers around 10(6).
View Article and Find Full Text PDFAn anisotropic shell model has been proposed for two-dimensional (2D) turbulence. It is similar to the 2D version of the Gledzer-Ohkitani-Yamada model but with the angular variable in wave-number space divided into three distinct directions representing structures elongated in different directions. In the case when the drive is isotropic the usual isotropic solution is recovered as the fixed point of this model.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
August 2010
We present an analysis of the anisotropic spectral energy distribution in incompressible magnetohydrodynamic turbulence permeated by a strong mean magnetic field. The turbulent flow is generated by high-resolution pseudospectral direct numerical simulations with large-scale isotropic forcing. Examining the radial energy distribution for various angles θ with respect to B0 reveals a specific structure which remains hidden when not taking axial symmetry with respect to B0 into account.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
June 2003
Direct numerical simulations of decaying and forced magnetohydrodynamic (MHD) turbulence without and with mean magnetic field are analyzed by higher-order two-point statistics. The turbulence exhibits statistical anisotropy with respect to the direction of the local magnetic field even in the case of global isotropy. A mean magnetic field reduces the parallel-field dynamics while in the perpendicular direction a gradual transition towards two-dimensional MHD turbulence is observed with k(-3/2) inertial-range scaling of the perpendicular energy spectrum.
View Article and Find Full Text PDFSpectral direct numerical simulations of incompressible MHD turbulence at a resolution of up to 1024(3) collocation points are presented for a statistically isotropic system as well as for a setup with an imposed strong mean magnetic field. The spectra of residual energy, E(R)k=|E(M)k - E(K)k|, and total energy, Ek=E(K)k+E(M)k, are observed to scale self-similarly in the inertial range as E(R)k approximately k(-7/3), E(k)approximately k(-5/3) (isotropic case) and E(R)(k(perpendicular) approximately k(-2)(perpendicular), E(k(perpendicular))approximately k(-3/2)(perpendicular) (anisotropic case, perpendicular to the mean field direction). A model of dynamic equilibrium between kinetic and magnetic energy, based on the corresponding evolution equations of the eddy-damped quasinormal Markovian closure approximation, explains the findings.
View Article and Find Full Text PDF