Therapeutic advances in treating patients with multiple myeloma (MM), including novel immunotherapies, have improved the disease control, but it remains incurable. Although traditional immune check point inhibitors have shown limited clinical benefit, targeting alternative immune-inhibitory pathways may offer a novel way to address relapsed disease. Blockade of the immune regulator TIGIT was shown to enhance antitumor immunity in preclinical MM models.
View Article and Find Full Text PDFCancers that are poorly immune infiltrated pose a substantial challenge, with current immunotherapies yielding limited clinical success. Stem-like memory T cells (TSCM) have been identified as a subgroup of T cells that possess strong proliferative capacity and that can expand and differentiate following interactions with dendritic cells (DCs). In this study, we explored the pattern of expression of a recently discovered inhibitory receptor poliovirus receptor-related immunoglobulin domain protein (PVRIG) and its ligand, poliovirus receptor-related ligand 2 (PVRL2), in the human tumor microenvironment.
View Article and Find Full Text PDFRecombinant cytokines have limited anticancer efficacy mostly due to a narrow therapeutic window and systemic adverse effects. IL18 is an inflammasome-induced proinflammatory cytokine, which enhances T- and NK-cell activity and stimulates IFNγ production. The activity of IL18 is naturally blocked by a high-affinity endogenous binding protein (IL18BP).
View Article and Find Full Text PDFThe standard treatment approach for stage II/III rectal cancer is neoadjuvant chemoradiation therapy (nCRT) followed by surgery. In recent years, new treatment approaches have led to higher rates of complete tumor eradication combined with organ-preservation strategies. However, better tools are still needed to personalize therapy for the individual patient.
View Article and Find Full Text PDFThe identification of SARS-CoV-2 variants across the globe and their implications on the outspread of the pandemic, infection potential and resistance to vaccination, requires modification of the current diagnostic methods to map out viral mutations rapidly and reliably. Here, we demonstrate that integrating DNA barcoding technology, sample pooling and Next Generation Sequencing (NGS) provide an applicable solution for large-population viral screening combined with specific variant analysis. Our solution allows high throughput testing by barcoding each sample, followed by pooling of test samples using a multi-step procedure.
View Article and Find Full Text PDF