Publications by authors named "R Goodnow"

Introduction: Despite much progress in the field of oligonucleotide therapeutics, delivery in general remains an important aspect for innovation. Various lipids and lipophilic small molecules have long been conjugated to many oligonucleotides in hopes of creating better, drug-like substances. A few conjugates are beginning to enter clinical development as the understanding grows of how such conjugations change the pharmacology of the conjugate relative to the unmodified oligonucleotide.

View Article and Find Full Text PDF

Stabilization of protein-protein interactions (PPIs) holds great potential for therapeutic agents, as illustrated by the successful drugs rapamycin and lenalidomide. However, how such interface-binding molecules can be created in a rational, bottom-up manner is a largely unanswered question. We report here how a fragment-based approach can be used to identify chemical starting points for the development of small-molecule stabilizers that differentiate between two different PPI interfaces of the adapter protein 14-3-3.

View Article and Find Full Text PDF

Artificial intelligence (AI) tools are increasingly being applied in drug discovery. While some protagonists point to vast opportunities potentially offered by such tools, others remain sceptical, waiting for a clear impact to be shown in drug discovery projects. The reality is probably somewhere in-between these extremes, yet it is clear that AI is providing new challenges not only for the scientists involved but also for the biopharma industry and its established processes for discovering and developing new medicines.

View Article and Find Full Text PDF

Wnt signaling is critical for development, cell proliferation and differentiation, and mutations in this pathway resulting in constitutive signaling have been implicated in various cancers. A pathway screen using a Wnt-dependent reporter identified a chemical series based on a 1,2,3-thiadiazole-5-carboxamide (TDZ) core with sub-micromolar potency. Herein we report a comprehensive mechanism-of-action deconvolution study toward identifying the efficacy target(s) and biological implication of this chemical series involving bottom-up quantitative chemoproteomics, cell biology, and biochemical methods.

View Article and Find Full Text PDF