Collective biological systems display power laws for macroscopic quantities and are fertile probing grounds for statistical physics. Besides power laws, natural insect swarms present strong scale-free correlations, suggesting closeness to phase transitions. Swarms exhibit imperfect dynamic scaling: their dynamical correlation functions collapse into single curves when written as functions of the scaled time tξ^{-z} (ξ: correlation length, z: dynamic exponent), but only for short times.
View Article and Find Full Text PDFAnimal motion and flocking are ubiquitous nonequilibrium phenomena that are often studied within active matter. In examples such as insect swarms, macroscopic quantities exhibit power laws with measurable critical exponents and ideas from phase transitions and statistical mechanics have been explored to explain them. The widely used Vicsek model with periodic boundary conditions has an ordering phase transition but the corresponding homogeneous ordered or disordered phases are different from observations of natural swarms.
View Article and Find Full Text PDFThe harmonically confined Vicsek model displays qualitative and quantitative features observed in natural insect swarms. It exhibits a scale-free transition between single and multicluster chaotic phases. Finite-size scaling indicates that this unusual phase transition occurs at zero confinement [Phys.
View Article and Find Full Text PDFThe Vicsek model encompasses the paradigm of active dry matter. Motivated by collective behavior of insects in swarms, we have studied finite-size effects and criticality in the three-dimensional, harmonically confined Vicsek model. We have discovered a phase transition that exists for appropriate noise and small confinement strength.
View Article and Find Full Text PDF