Publications by authors named "R Going"

We present monolithically integrated multi-channel coherent L-band transmitter (Tx) and receiver (Rx) photonic integrated circuits (PICs) on InP substrates. The L-band PICs are able to provide post-forward error correction (FEC), error-free operation for dual-polarization (DP) 16-QAM coherent transmission at 33 Gbaud. These transceivers operate at 200 Gbps per channel and support 1.

View Article and Find Full Text PDF

Fully integrated monolithic, multi-channel InP-based coherent receiver PICs and transceiver modules with extended C-band tunability are described. These PICs operate at 33 and 44 Gbaud per channel under dual polarization (DP) 16-QAM modulation. Fourteen-channel monolithic InP receiver PICs show integration and data rate scaling capability to operate at 44 Gbaud under DP 16-QAM modulation for combined 4.

View Article and Find Full Text PDF

We present a novel waveguide coupling scheme where a germanium diode grown via rapid melt growth is wrapped around a silicon waveguide. A 4 fF PIN photodiode is demonstrated with 0.95 A/W responsivity at 1550 nm, 6 nA dark current, and nearly 9 GHz bandwidth.

View Article and Find Full Text PDF

We propose a cladding engineering method that flexibly modifies the radiation patterns and rates of metal-clad nanoscale optical cavity. Optimally adjusting the cladding symmetry of the metal-clad nanoscale optical cavity modifies the modal symmetry and produces highly directional radiation that leads to 90% coupling efficiency into an integrated waveguide. In addition, the radiation rate of the cavity mode can be matched to its absorption rate by adjusting the thickness of the bottom-cladding layer.

View Article and Find Full Text PDF

We propose two designs of nanoscale sub-fF germanium photodiodes which are efficiently integrated with silicon waveguides. The metal-optic cavities are simulated with the finite difference time domain method and optimized using critical coupling concepts. One design is for a metal semiconductor metal photodiode with <200 aF capacitance, 39% external quantum efficiency, and 0.

View Article and Find Full Text PDF