Polycystic ovary syndrome (PCOS) affects 8-13% of reproductive-aged women, impacts biopsychosocial factors and creates a significant health-related economic burden across the reproductive, metabolic and psychological spectrum of complications. Despite being a heterogenous condition, recent genomic studies indicate that PCOS, regardless of diagnostic criteria and clinical features, shares similar underlying biologic mechanisms. However, recent advances have shown that clinical reproductive and diagnostic features are poorly correlated to genotypes and do not represent true phenotypes.
View Article and Find Full Text PDFBiomedical applications for metal and metal oxide nanoparticles are rapidly increasing. Here their functional impact on two well-characterized model enzymes, Luciferase (Luc) or β-galactosidase (β-Gal) was quantitatively compared. Nickel oxide nanoparticle (NiO-NP) activated β-Gal (>400% control) and boron carbide nanoparticle (B4C-NP) inhibited Luc(<10% control), whereas zinc oxide (ZnO-NP) and cobalt oxide (Co3O4-NP) activated β-Gal to a lesser extent and magnesium oxide (MgO) moderately inhibited both enzymes.
View Article and Find Full Text PDFTemperature is arguably the most important abiotic factor influencing the life history of ectotherms. It limits survival and affects all physiological and metabolic processes, including energy and nutrient procurement and processing, development and growth rates, locomotion ability and ultimately reproductive success. However, the influence of temperature on the energetic cost of development has not been thoroughly investigated.
View Article and Find Full Text PDFAim: Nanoparticle conjugates have the potential for delivering siRNA, splice-shifting oligomers or nucleic acid vaccines, and can be applicable to anticancer therapeutics. This article compares tripartite conjugates with gold nanoparticles or synthetic methoxypoly(ethylene glycol)-block-polyamidoamine dendrimers.
Materials & Methods: Interactions with model liposomes of a 1:1 molar ratio of tripalmitin:cholesterol or phospholipid:cholesterol were investigated by high-throughput absorbance, as well as fluorescence difference and cellular luminescence assays.
Purinergic signaling plays a unique role in the brain by integrating neuronal and glial cellular circuits. The metabotropic P1 adenosine receptors and P2Y nucleotide receptors and ionotropic P2X receptors control numerous physiological functions of neuronal and glial cells and have been implicated in a wide variety of neuropathologies. Emerging research suggests that purinergic receptor interactions between cells of the central nervous system (CNS) have relevance in the prevention and attenuation of neurodegenerative diseases resulting from chronic inflammation.
View Article and Find Full Text PDF