Publications by authors named "R Garcia-Figueiras"

Multi-energy computed tomography (CT) involves acquisition of two or more CT measurements with distinct energy spectra. Using the differential attenuation of tissues and materials at different X-ray energies, multi-energy CT allows distinction of tissues and materials. Multi-energy technology encompasses different types of CT systems, such as dual-energy CT and photon-counting CT, that can use information from the energy and type of material present in acquired images to create multiple datasets.

View Article and Find Full Text PDF

Bone marrow is a dynamic organ with variable composition in relation to age or pathophysiological changes. Magnetic resonance imaging (MRI) is the technique of choice to assess the different components of the bone marrow based on the different information provided by the different characteristics of the MRI sequences. This article provides an overview of the MRI appearances of normal and abnormal bone marrow.

View Article and Find Full Text PDF

Dual-energy CT (DECT) imaging has broadened the potential of CT imaging by offering multiple postprocessing datasets with a single acquisition at more than one energy level. DECT shows profound capabilities to improve diagnosis based on its superior material differentiation and its quantitative value. However, the potential of dual-energy imaging remains relatively untapped, possibly due to its intricate workflow and the intrinsic technical limitations of DECT.

View Article and Find Full Text PDF

Radiation therapy is fundamental in the treatment of cancer. Imaging has always played a central role in radiation oncology. Integrating imaging technology into irradiation devices has increased the precision and accuracy of dose delivery and decreased the toxic effects of the treatment.

View Article and Find Full Text PDF

Radiomics allows the extraction of quantitative imaging features from clinical magnetic resonance imaging (MRI) and computerized tomography (CT) studies. The advantages of radiomics have primarily been exploited in oncological applications, including better characterization and staging of oncological lesions and prediction of patient outcomes and treatment response. The potential introduction of radiomics in the clinical setting requires the establishment of a standardized radiomics pipeline and a quality assurance program.

View Article and Find Full Text PDF