This study investigates the effect of hydrostatic pressure on the luminescence properties of CsPbBr single crystals at 12 K. The luminescence at the edge of the band gap reveals a structure attributed to free excitons, phonon replica of the free excitons, and Rashba excitons. Changes in the relative intensity of the free and Rashba excitons were observed with increasing pressure, caused by changes in the probability of nonradiative deexcitation.
View Article and Find Full Text PDFThe material with a high Curie temperature of cobalt-doped zinc oxide embedded with silver-nanoparticle thin films was studied by electron magnetic resonance. The nanoparticles were synthesized by the homogeneous nucleation technique. Thin films were produced with the pulsed laser deposition method.
View Article and Find Full Text PDFA new family of heterostructured transition-metal dichalcogenides (TMDCs) with incommensurate ("misfit") spatial arrangements of well-defined layers was prepared from structurally dissimilar single-phase 2H-MoS and 1T-HfS materials. The experimentally observed heterostructuring is energetically favorable over the formation of homogeneous multi-principle element dichalcogenides observed in related dichalcogenide systems of Mo, W, and Ta. The resulting three-dimensional (3D) heterostructures show semiconducting behavior with an indirect band gap around 1 eV, agreeing with values predicted from density functional theory.
View Article and Find Full Text PDFRealtime in situ temperature monitoring in difficult experimental conditions or inaccessible environments is critical for many applications. Non-contact luminescence decay time thermometry is often the method of choice for such applications due to a favorable combination of sensitivity, accuracy and robustness. In this work, we demonstrate the feasibility of an ultrafast PbI scintillator for temperature determination, using the time structure of X-ray radiation, produced by a synchrotron.
View Article and Find Full Text PDFThe results on optical studies of LiKBO-AgO and LiKBO-AgO-GdO glasses containing Ag nanoparticles formed during annealing in vacuum and air are presented. Strong bands that appear in optical transmission spectra of the samples correspond to plasmon excitations associated with Ag nanoparticles. The average radius of Ag nanoparticles was retrieved from FWHM of the plasmon bands and found to be 1.
View Article and Find Full Text PDF