We describe a combination of microelectrophoresis and laser-trap methodology to accurately measure the electric force acting on a charged microsphere which is trapped in an optical tweezer. This field/trap apparatus allows measuring of the zeta potential with submillivolt accuracy and high temporal resolution. The combination with stop-flow techniques in principle provides a mean to observe adsorption or enzyme kinetics with single molecule sensitivity.
View Article and Find Full Text PDFWe describe an apparatus that combines microelectrophoresis and laser trap technologies to monitor the activity of phosphoinositide-specific phospholipase C-delta1 (PLC-delta) on a single bilayer-coated silica bead with a time resolution of approximately 1 s. A 1-microm-diameter bead was coated with a phospholipid bilayer composed of electrically neutral phosphatidylcholine (PC) and negatively charged phosphatidylinositol 4,5-bisphosphate (2% PIP2) and captured in a laser trap. When an AC field was applied (160 Hz, 20 V/cm), the electrophoretic force produced a displacement of the bead, Delta(x), from its equilibrium position in the trap; Delta(x), which was measured using a fast quadrant diode detector, is proportional to the zeta potential and thus to the number of PIP2 molecules on the outer leaflet (initially, approximately 10(5)).
View Article and Find Full Text PDFBackground: The delivery of genes to the airways holds promise for the treatment of lung diseases such as cystic fibrosis and asthma. Current non-viral gene delivery systems lack sufficient transfection efficiency. Pulmonary surfactant has been reported to be a barrier to gene transfer into the airways.
View Article and Find Full Text PDFWe studied the elasticity of both a wild type (F9) mouse embryonic carcinoma and a vinculin-deficient (5.51) cell line, which was produced by chemical mutagenesis. Using cell poking, we measured the effects of loss of vinculin on the elastic properties of these cells.
View Article and Find Full Text PDFWe have investigated a mouse F9 embryonic carcinoma cell line, in which both vinculin genes were inactivated by homologous recombination, that exhibits defective adhesion and spreading [Coll et al. (1995) Proc. Natl.
View Article and Find Full Text PDF