Background: Increased blood-brain barrier (BBB) permeability and amyloid-β (Aβ) peptides (especially Aβ1-42) (Aβ42) have been linked to Alzheimer's disease (AD) pathogenesis, but the nature of their involvement in AD-related neuropathological changes leading to cognitive changes remains poorly understood.
Objective: To test the hypothesis that chronic extravasation of bloodborne Aβ42 peptide and brain-reactive autoantibodies and their entry into the brain parenchyma via a permeable BBB contribute to AD-related pathological changes and cognitive changes in a mouse model.
Methods: The BBB was rendered chronically permeable through repeated injections of Pertussis toxin (PT), and soluble monomeric, fluorescein isothiocyanate (FITC)-labeled or unlabeled Aβ42 was injected into the tail-vein of 10-month-old male CD1 mice at designated intervals spanning ∼3 months.
Introduction: Screening for neurocognitive impairment and psychological distress in ambulatory primary and specialty care medical settings is an increasing necessity. The Core Cognitive Evaluation™ (CCE) is administered/scored using an iPad, requires approximately 8 min, assesses 3- word free recall and clock drawing to command and copy, asks questions about lifestyle and health, and queries for psychological distress. This information is linked with patients' self- reported concerns about memory and their cardiovascular risks.
View Article and Find Full Text PDFBackground: Evidence for the universal presence of IgG autoantibodies in blood and their potential utility for the diagnosis of Alzheimer's disease (AD) and other neurodegenerative diseases has been extensively demonstrated by our laboratory. The fact that AD-related neuropathological changes in the brain can begin more than a decade before tell-tale symptoms emerge has made it difficult to develop diagnostic tests useful for detecting the earliest stages of AD pathogenesis.
Objective: To determine the utility of a panel of autoantibodies for detecting the presence of AD-related pathology along the early AD continuum, including at pre-symptomatic [an average of 4 years before the transition to mild cognitive impairment (MCI)/AD)], prodromal AD (MCI), and mild-moderate AD stages.
Though hippocampal volume reduction is a pathological hallmark of schizophrenia, the molecular pathway(s) responsible for this degeneration remains unknown. Recent reports have suggested the potential role of impaired blood-brain barrier (BBB) function in schizophrenia pathogenesis. However, direct evidence demonstrating an impaired BBB function is missing.
View Article and Find Full Text PDFBlood-brain barrier (BBB) permeability is a recognized early feature of Alzheimer's disease (AD). In the present study, we examined consequences of increased BBB permeability on the development of AD-related pathology by tracking selected leaked plasma components and their interactions with neurons in vivo and in vitro. Histological sections of cortical regions of postmortem AD brains were immunostained to determine the distribution of amyloid-β1-42 (Aβ42), cathepsin D, IgG, GluR2/3, and alpha7 nicotinic acetylcholine receptor (α7nAChR).
View Article and Find Full Text PDF