Base-J (β-D-glucopyranosyloxymethyluracil) is an unusual kinetoplastid-specific DNA modification, recognized by base-J containing DNA (J-DNA) binding proteins JBP1 and JBP3. Recognition of J-DNA by both JBP1 and JBP3 takes place by a conserved J-DNA binding domain (JDBD). Here we show that JDBD-JBP3 has about 1,000-fold weaker affinity to base-J than JDBD-JBP1 and discriminates between J-DNA and unmodified DNA with a factor ∼5, whereas JDBD-JBP1 discriminates with a factor ∼10,000.
View Article and Find Full Text PDFAdvances in liquid phase transmission electron microscopy (LP-TEM) have enabled the monitoring of polymer dynamics in solution at the nanoscale, but radiolytic damage during LP-TEM imaging limits its routine use in polymer science. This study focuses on understanding, mimicking, and mitigating radiolytic damage observed in functional polymers in LP-TEM. It is quantitatively demonstrated how polymer damage occurs across all conceivable (LP-)TEM environments, and the key characteristics and differences between polymer degradation in water vapor and liquid water are elucidated.
View Article and Find Full Text PDFNew results are presented on a high-statistics measurement of Collins and Sivers asymmetries of charged hadrons produced in deep inelastic scattering of muons on a transversely polarized ^{6}LiD target. The data were taken in 2022 with the COMPASS spectrometer using the 160 GeV muon beam at CERN, statistically balancing the existing data on transversely polarized proton targets. The first results from about two-thirds of the new data have total uncertainties smaller by up to a factor of three compared to the previous deuteron measurements.
View Article and Find Full Text PDF