Publications by authors named "R Fornari"

Electrical contacts are of the greatest importance as they decisively contribute to the overall performance of photoresistors. Undoped κ-GaO is an ideal material for photoresistors with high performance in the UV-C spectral region thanks to its intrinsic solar blindness and extremely low dark current. The quality assessment of the contact/κ-GaO interface is therefore of paramount importance.

View Article and Find Full Text PDF
Article Synopsis
  • Molybdenum disulfide (MoS) is a 2D semiconductor with a range of applications, and using liquid molybdenum precursors has enhanced its production at a large scale.
  • The study investigates how different nitrogen carrier gas flow rates (150 to 300 sccm) affect the growth and properties of MoS films on silicon substrates.
  • Findings indicate a relationship between the carrier gas flow, the lateral size and shape of MoS flakes, and sulfur availability, leading to improved synthesis of uniform single-layer flakes up to 100 µm.
View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the properties and passivation of methylammonium lead triiodide (MAPbI) used in perovskite solar cells, finding a tetragonal crystal structure with a slight excess of PbI at grain boundaries.
  • Optical tests show MAPbI has a band gap of 1.53 eV, suggesting its effectiveness as a visible light absorber for solar energy applications.
  • Simulations predict a maximum power conversion efficiency (PCE) of 26.03% for optimized solar cell designs, highlighting the importance of various parameters like resistance and device structure in improving efficiency.
View Article and Find Full Text PDF

Semiconductor photodetectors can work only in specific material-dependent light wavelength ranges, connected with the bandgaps and absorption capabilities of the utilized semiconductors. This limitation has driven the development of hybrid devices that exceed the capabilities of individual materials. In this study, for the first time, a hybrid heterojunction photodetector based on methylammonium lead bromide (MAPbBr) polycrystalline film deposited on gallium arsenide (GaAs) was presented, along with comprehensive morphological, structural, optical, and photoelectrical investigations.

View Article and Find Full Text PDF

Understanding protein function often necessitates characterizing the flexibility of protein structures. However, simulating protein flexibility poses significant challenges due to the complex dynamics of protein systems, requiring extensive computational resources and accurate modeling techniques. In response to these challenges, the CABS-flex method has been developed as an efficient modeling tool that combines coarse-grained simulations with all-atom detail.

View Article and Find Full Text PDF