Publications by authors named "R Forber"

This paper provides the details of a multiaxis electric field sensor. The sensing element consists of three slab coupled optical-fiber sensors that are combined to allow directional electric field sensing. The packaged three-axis sensor has a small cross-sectional area of 0.

View Article and Find Full Text PDF

This paper presents a method for calibrating slab coupled optical fiber sensors (SCOS). An automated system is presented for selecting the optimal laser wavelength for use in SCOS interrogation. The wavelength calibration technique uses a computer sound card for both the creation of the applied electric field and the signal detection.

View Article and Find Full Text PDF

This paper provides a detailed analysis of electric field sensing using a slab-coupled optical fiber sensor (SCOS). This analysis explains that the best material for the slab waveguide is an inorganic material because of the low RF permittivity combined with the high electro-optic coefficient. The paper also describes the fabrication and testing of a SCOS using an AJL chromophore in amorphous polycarbonate.

View Article and Find Full Text PDF

An electro-optic sensor capable of detecting electric fields with a high degree of sensitivity and linearity is fabricated using optical D-fiber. The slab coupled optical sensor utilizes weak coupling and long evanescent interaction with a lithium niobate waveguide. Transmission dips from mode resonances have a linewidth of 0.

View Article and Find Full Text PDF

We demonstrate the operation of an in-fiber electric field sensor. The sensor is fabricated with selective chemical etching of the core of a D-shaped optical fiber followed by the deposition of an electro-optic polymer (PMMA/DR1), which forms a hybrid core. The device demonstrates electromagnetic field sensitivity less than 100 V/m at a frequency of 2.

View Article and Find Full Text PDF