Introduction: Pharmacovigilance is vital for drug safety. The process typically involves two key steps: initial signal generation from spontaneous reporting systems (SRSs) and subsequent expert review to assess the signals' (potential) causality and decide on the appropriate action.
Methods: We propose a novel discovery and verification approach to pharmacovigilance based on electronic healthcare data.
Motivation: The Peter Clark (PC) algorithm is a popular causal discovery method to learn causal graphs in a data-driven way. Until recently, existing PC algorithm implementations in R had important limitations regarding missing values, temporal structure or mixed measurement scales (categorical/continuous), which are all common features of cohort data. The new R packages presented here, micd and tpc, fill these gaps.
View Article and Find Full Text PDFChildhood obesity is a complex disorder that appears to be influenced by an interacting system of many factors. Taking this complexity into account, we aim to investigate the causal structure underlying childhood obesity. Our focus is on identifying potential early, direct or indirect, causes of obesity which may be promising targets for prevention strategies.
View Article and Find Full Text PDF