Rice ( L.) end-use cooking quality is vital for producers and billions of consumers worldwide. Grain quality is a complex trait with interacting genetic and environmental factors.
View Article and Find Full Text PDFThe Pib gene in rice confers resistance to a wide range of races of the rice blast pathogen, Magnaporthe oryzae, including race IE1k that overcomes Pita, another broad-spectrum resistance gene. In this study, the presence of Pib was determined in 164 rice germplasm accessions from a core subset of the National Small Grains Collection utilizing DNA markers and pathogenicity assays. The presence of Pib was evaluated with two simple sequence repeat (SSR) markers and a dominant marker (Pib-dom) derived from the Pib gene sequence.
View Article and Find Full Text PDFAn association analysis on the genetic variability for silica concentration in rice hulls was performed using a "Mini-Core" set of 174 accessions representative of the germplasm diversity found in the USDA world collection of rice. Hull silica concentration was determined in replicated trials conducted in two southern states in the USA and was analyzed for its association with 164 genome-wide DNA markers. Among the accessions, the average silica concentration ranged from 120 to 251 mg g(-1).
View Article and Find Full Text PDFRice (Oryza sativa L.) head-rice yield (HR) is a key export and domestic quality trait whose genetic control is poorly understood. With the goal of identifying genomic regions influencing HR, quantitative-trait-locus (QTL) mapping was carried out for quality-related traits in recombinant inbred lines (RILs) derived from crosses of common parent Cypress, a high-HR US japonica cultivar, with RT0034, a low-HR indica line (129 RILs) and LaGrue, a low-HR japonica cultivar (298 RILs), grown in two US locations in 2005-2007.
View Article and Find Full Text PDFABSTRACT The Pi-ta gene in rice prevents the infection by Magnaporthe grisea strains containing the AVR-Pita avirulence gene. The presence of Pi-ta in rice cultivars was correlated completely with resistance to two major pathotypes, IB-49 and IC-17, common in the U.S.
View Article and Find Full Text PDF