Management of the COVID-19 pandemic relies on molecular diagnostic methods supported by serological tools. Herein, we developed S-RBD- and N- based ELISA assays useful for infection rate surveillance as well as the follow-up of acquired protective immunity against SARS-CoV-2. ELISA assays were optimized using COVID-19 Tunisian patients' sera and prepandemic controls.
View Article and Find Full Text PDFProfiling of the antibody responses to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) proteins in African populations is scarce. Here, we performed a detailed IgM and IgG epitope mapping study against 487 peptides covering SARS-CoV-2 wild-type structural proteins. A panel of 41 pre-pandemic and 82 COVID-19 RT-PCR confirmed sera from Madagascar and Senegal were used.
View Article and Find Full Text PDFSero-surveillance can monitor and project disease burden and risk. However, SARS-CoV-2 antibody test results can produce false positive results, limiting their efficacy as a sero-surveillance tool. False positive SARS-CoV-2 antibody results are associated with malaria exposure, and understanding this association is essential to interpret sero-surveillance results from malaria-endemic countries.
View Article and Find Full Text PDFObjectives: A nationwide cross-sectional epidemiological survey was conducted to capture the true extent of coronavirus disease 2019 (COVID-19) exposure in Senegal.
Methods: Multi-stage random cluster sampling of households was performed between October and November 2020, at the end of the first wave of COVID-19 transmission. Anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies were screened using three distinct ELISA assays.