Publications by authors named "R Falcioni"

Understanding photosynthetic mechanisms in different plant species is crucial for advancing agricultural productivity and ecological restoration. This study presents a detailed physiological and ultrastructural comparison of photosynthetic mechanisms between Hibiscus ( L.) and Pelargonium ( (L.

View Article and Find Full Text PDF

The application of non-imaging hyperspectral sensors has significantly enhanced the study of leaf optical properties across different plant species. In this study, chlorophyll fluorescence (ChlF) and hyperspectral non-imaging sensors using ultraviolet-visible-near-infrared shortwave infrared (UV-VIS-NIR-SWIR) bands were used to evaluate leaf biophysical parameters. For analyses, principal component analysis (PCA) and partial least squares regression (PLSR) were used to predict eight structural and ultrastructural (biophysical) traits in green and purple leaves.

View Article and Find Full Text PDF

The differential effects of cellular and ultrastructural characteristics on the optical properties of adaxial and abaxial leaf surfaces in the genus highlight the intricate relationships between cellular arrangement and pigment distribution in the plant cells. We examined hyperspectral and chlorophyll fluorescence (ChlF) kinetics using spectroradiometers and optical and electron microscopy techniques. The leaves were analysed for their spectral properties and cellular makeup.

View Article and Find Full Text PDF

Heat stress is an abiotic factor that affects the photosynthetic parameters of plants. In this study, we examined the photosynthetic mechanisms underlying the rapid response of tobacco plants to heat stress in a controlled environment. To evaluate transient heat stress conditions, changes in photochemical, carboxylative, and fluorescence efficiencies were measured using an infrared gas analyser (IRGA Licor 6800) coupled with chlorophyll a fluorescence measurements.

View Article and Find Full Text PDF

Reflectance hyperspectroscopy is recognised for its potential to elucidate biochemical changes, thereby enhancing the understanding of plant biochemistry. This study used the UV-VIS-NIR-SWIR spectral range to identify the different biochemical constituents in Hibiscus and Geranium plants. Hyperspectral vegetation indices (HVIs), principal component analysis (PCA), and correlation matrices provided in-depth insights into spectral differences.

View Article and Find Full Text PDF