Previous use of a mechanistic static model to accurately quantify the increased rosuvastatin exposure due to drug-drug interaction (DDI) with coadministered atazanavir underpredicted the magnitude of area under the plasma concentration-time curve ratio (AUCR) based on inhibition of breast cancer resistance protein (BCRP) and organic anion transporting polypeptide (OATP) 1B1. To reconcile the disconnect between predicted and clinical AUCR, atazanavir and other protease inhibitors (darunavir, lopinavir and ritonavir) were evaluated as inhibitors of BCRP, OATP1B1, OATP1B3, sodium taurocholate cotransporting polypeptide (NTCP) and organic anion transporter (OAT) 3. None of the drugs inhibited OAT3, nor did darunavir and ritonavir inhibit OATP1B3 or NTCP.
View Article and Find Full Text PDFIntroduction: Transporters are significant in dictating drug pharmacokinetics, thus inhibition of transporter function can alter drug concentrations resulting in drug-drug interactions (DDIs). Because they can impact drug toxicity, transporter DDIs are a regulatory concern for which prediction of clinical effect from data is critical to understanding risk.
Area Covered: The authors propose strategies to assist mitigating/removing transporter DDI risk during development by frontloading specific studies, or managing patient risk in the clinic.
A previous attempt to accurately quantify the increased simvastatin acid exposure due to drug-drug interaction (DDI) with coadministered telithromycin, using a mechanistic static model, substantially underpredicted the magnitude of the area under the plasma concentration-time curve ratio (AUCR) based on reversible inhibition of CYP3A4 and organic anion transporting polypeptide 1B1 (OATP1B1). To reconcile this disconnect between predicted and clinically observed AUCR, telithromycin was evaluated as a time-dependent inhibitor of CYP3A4 in vitro, as well as an inhibitor of OATP1B1. Telithromycin inhibited OATP1B1-mediated [H]-estradiol 17-d-glucuronide (0.
View Article and Find Full Text PDFPharmacol Res Perspect
October 2017
Metformin is a common co-medication for many diseases and the victim of clinical drug-drug interactions (DDIs) perpetrated by cimetidine, trimethoprim and pyrimethamine, resulting in decreased active renal clearance due to inhibition of organic cation transport proteins and increased plasma exposure of metformin. To understand whether area under the plasma concentration-time curve (AUC) increases relate to absorption, in vitro inhibitory potencies of these drugs against metformin transport by human organic cation transporter (OCT) 1, and the apical to basolateral absorptive permeability of metformin across Caco-2 cells in the presence of therapeutic intestinal concentrations of cimetidine, trimethoprim or pyrimethamine, were determined. Whilst all inhibited OCT1, none enhanced metformin's absorptive permeability (~0.
View Article and Find Full Text PDFBackground And Objectives: Fostamatinib is a spleen tyrosine kinase inhibitor that has been investigated as therapy for rheumatoid arthritis and immune thrombocytopenic purpura. The present studies assessed the potential for pharmacokinetic interaction between fostamatinib and the commonly prescribed medications oral contraceptive (OC), warfarin, and statins (rosuvastatin, simvastatin) in healthy subjects.
Methods: The OC study was a crossover study over two 28-day treatment periods (Microgynon(®) 30 plus placebo or fostamatinib).